I am passionate about using machine learning, AI, and data-driven methods to support the energy transition and climate change mitigation and adaptation.
I am an Intelligence Architect and AI Expert at Birds on Mars, where I enable companies to create value with their data.
At the Distributed Artificial Intelligence Laboratory (DAI-Lab), I have coordinated and worked on several research projects investigating how digitization and AI can support the energy transition. Within those projects, I have been modeling, forecasting, and optimizing different demand-side processes such as electric vehicles, smart building- and smart home loads, and renewable generation. I coordinated the research group Smart Energy Systems, where I was responsible for aligning the DAI research for solutions for the energy system. I have co-supervised several Seminar, Bachelor and Master theses and project-based courses, mostly in applied machine learning for energy data, hoping to inspire more students to work in the field.
In my doctoral research, I work on analyzing low voltage-level smart meter data using non-Euclidean distance measures and neural networks with applications in load forecasting and load profile clustering. Are you also analyzing load data? Then check out or contribute to our list of load datasets!
I volunteer in Climate Change AI’s content committee to provide resources for researchers and practitioners transitioning into AI and machine learning for climate change mitigation and adaptation, like on the CCAI Wiki.
PhD in Computer Science, 2021 (planned)
TU Berlin
M.Sc. in Information Systems, 2014
Humboldt University of Berlin
B.Sc. in Information Systems, 2011
HWR Berlin
This paper presents a literature review on the topic of Low Voltage (LV) load forecasting. It gives an overview of the approaches, core applications, datasets, trends, and challenges. Suggestions how to facilitate the continued improvement and advancement are given and a set of recommendations toward best practices are provided.